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Acoustic camera and beampattern
Jørgen Grythe, Norsonic AS, Oslo, Norway

Abstract—The wavenumber-frequency response of an array
describes the response to an arbitrary plane wave both in time
and space. When the input consists of a single monochromatic
plane wave, the response of the array is referred to as the array
pattern or beampattern. Through the design of the array our
goal is to have a directivity of the array as high as possible
in a given direction, while suppressing signals and noise
from directions being different from our focused attention. The
beampattern of an array is a key element in determining array
performance, and is largely determined by the array geometry.

Index Terms—Array pattern, beampattern, beamforming,
wavenumber-frequency space

INTRODUCTION

AN acoustic array consists of a number of elements,
sensors or microphones positioned in a certain geometry

that are reacting to sound wave fields hitting the array to
produce outputs. When we observe a wavefield through
an array of finite size, the observed wavefield spectrum
output from the array will be a convolution between the
source spectrum and the array, and becomes a distorted
and smoothed version of the source spectrum. Our goal is
to design an array such that the observed spectrum is as
close to the true spectrum as possible. We can control the
impact the array has on the spectrum by changing the size
and shape of the array, the number of elements being used
and assigning different weights to different elements of the
array. The weighting is sometimes also referred to as shading,
tapering or apodization. In general an array with a large spatial
extent can be more focused on any specific direction.

A single microphone element of an array will sample the
wavefield in time, and we can then get the well known
frequency response of time-varying signals. Since an array
consists of several sensors located at different positions, the
total array not only samples the wavefield in time, but also
in space based on the position of the individual elements.
Where the transformation of time will be frequency response,
the transformation of space is given as the wavenumber
response, and the total array response to an arbitrary wave
corresponds to the wavenumber-frequency response of a filter
operating both in time and space (spatio-temporal). That is,
the wavenumber-frequency response is to an array what the
frequency response is to a digital filter.

When the input to the array is a single monochromatic
(single frequency) plane wave in a homogenous medium, the
total wavenumber-frequency response of the array is called
the array pattern, or beampattern. The beampattern is the
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array response plot when the array is steered to a direction
of interest, and evaluates the magnitude of the array output
as a function of the incoming angle for the sound waves.
Through the beampattern we can analyse how the array’s
output is disturbed by signals being different from the one of
our focused attention. The goal in array signal processing
is to combine the different elements of the array in such
a way that we are able to steer the focus or beam to our
desired direction. This means that signals at particular angles
experience constructive interference, while others experience
destructive interference.

Because a superposition of plane waves expresses an
arbitrary wavefield, it suffices to determine the arrays re-
sponse to a monochromatic plane wave of a certain frequency
and propagation direction in order to provide a complete
characterization of the system’s frequency response. Or said
in other words, to find the beampattern, we use a plane wave
as input, and measure the output of the array.

I. BEAMPATTERN OF ONE-DIMENSIONAL ARRAYS

One of the simplest ways of interpreting beampattern is by
assuming a 1D array along the x-axis, measure its beampat-
tern only on the xy-plane, and plotting the beampattern at
the angle perpendicular to the line or the plane of the array,
also known as the broadside steering angle. An example
beampattern for a 10 element 1D array with half wavelength
spacing between elements is given in Fig. 1. The beampattern
in the figure may be plotted as a function of wavenumber
or incidence angle, and plotted in both rectangular plot and
polar plot. Although the plots are different, they all convey the
same information. Seen in the beampattern is the main beam
called the main lobe corresponding to the steering direction,
and smaller secondary lobes, called side lobes, which do
not correspond to the direction in which the array is being
steered. The width of the main lobe determines the array
resolution, or the ability to separate sources. The strength
of the side lobes compared to the main lobe determine the
dynamic range, or contrast. It measures how much attenuation
is provided outside the steering direction, and indicates the
sensitivity of the array to waves coming from other angles
than our steering direction. Our goal is to make the main lobe
as narrow and directive as possible, while at the same time
suppressing the magnitude of the side lobes. When optimizing
an array with different weightings of the elements, the main
lobe width and side lobe level will usually be at odds with
each other. Lowering the side lobes will lead to an increase
in the main lobe width, and finding an optimal beampattern
will always involve a compromise between the two. In Fig. 2
is the beampattern for the same array no longer plotted at
the broadside steering angle, but rather at 20◦.
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Fig. 1. Beampattern in both rectangular wavenumber plot, rectangular
incidence angle plot and polar plot at broadside steering angle

A. Sampling and element distance

As a wavefield hits an array consisting of several sensors,
the wavefield is sampled by each individual element and
combined. Seen in Fig. 3 is the beampattern of a linear array
with M = 10 elements and different element spacings. The
elements are uniformly spaced, with three different element
spacings: d = λ/2, λ and 2λ. As the inter-element distance
increases, the mainlobe gets narrower in addition to more and
narrower sidelobes. However, as the inter-element spacing
passes the limit d ≥ λ, so called grating lobes start to appear
in the beampattern. Grating lobes have the same magnitude
and shape as the main lobe, but occur in other directions than
our focus direction. The grating lobes are undesirable, since
the array is as sensitive to waves coming from the directions
of the grating lobes as for the steering direction. This will
severely impair the obtained signal quality.
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Fig. 2. Beampattern in both rectangular wavenumber plot, rectangular
incidence angle plot and polar plot at steering angle 20◦

Grating lobes is a manifestation of inadequate spatial sam-
pling for an array with uniformely spaced element distances,
and may be avoided by requiring that the distance between
elements is smaller than half the wavelength of the received
signal, d < λ/2. Realising that audible sound spans the
frequency range from 20 Hz to 20 kHz, giving a wavelength
λ spanning from 17 meters for the lowest frequencies, to 1.7
cm for the highest frequencies, the inter-element distance of
the sensors of an ideal array would have to vary from 0.85
centimeters up to 8.5 meters in order to avoid grating lobes
for all audible sound.

A different solution is what is known as irregular arrays,
where the distance between elements is non-periodic and
varies. For such arrays a low side lobe level may be achieved
over a wide selection of frequencies even though the average
element spacing is much larger than half a wavelength.
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Fig. 3. Beampattern and grating lobes when varying element distance

B. Altering array size

Seen in Fig. 4 is the beampattern for three different array
sizes, all with inter-element distance of λ/2 and uniform
weighting. As the array size increases, so does the number of
elements. As can be seen the relative size of the array greatly
affects the sharpness of the beampattern. For arrays with
uniform weight and uniform spacing between array elements,
as the size increase, the highest side lobe level becomes
independent of the number of elements and will be around
-13 dB lower than the main lobe. The main lobe beamwidth
however will get narrower with increasing size. In order to
achieve even lower side lobe levels, one must use non-uniform
weights on the elements.

C. Altering element weights

Seen in Fig. 5 is the element weight function and beampat-
tern of an M = 10 element array with inter-element spacing
of λ/2. Now the sensor weighting is no longer equal for alle
elements, and each sensor will contribute differently to the
combined output signal. The gray line in the lower part of the
figure represents an array with equal number of elements
and inter-element spacing, but with uniform weighting on
each sensor. As can be seen the side lobe level is lowered
significantly, although at a cost of slightly larger main lobe.
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Fig. 4. Beampattern with increasing array size with λ/2 element spacing
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Fig. 5. Beampattern of 10 element array when altering the element weights.
The gray line shows the case for uniformly weighted elements

D. Altering element position

Fig. 6 shows the sensor distance and beampattern of an
M = 10 element array with uniform weighting. The inter-
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Fig. 6. Beampattern of 10 element array when altering the inter-element
spacing. The gray line shows the case for uniformly spaced elements

element spacing however is no longer set at a fixed value,
but varies between elements. The distances are symmetric
around the centre of the array. Comparing again with the gray
line representing the uniformly spaced and uniformly weighted
array, one can see how the side lobes are lowered. Once
again this comes at a cost of a slightly wider main lobe.

II. BEAMPATTERN OF TWO-DIMENSIONAL ARRAYS

As opposed to the 1D case, the beampattern of a 2D
array is plotted in two-dimensional wavenumber space. Shown
in Fig. 7 and Fig. 8 is the geometry and beampattern of
a rectangular and circular array, both containing the same
number of elements with uniform weight. The sides of the
rectangular array is 1 meter in extent, whereas the circular
array has a diameter of 1 m.

Fig. 7. Geometry and beampattern of 256 element rectangular array at f =
2 kHz

As seen from the beampatterns, just by altering the array
geometry from rectangular to circular the side lobe levels
are greatly reduced. High side lobe levels and grating lobes
give rise to the so called ghost-spot or ghost image effect -

Fig. 8. Geometry and beampattern of 256 element circular array at f = 2
kHz

you measure a source which does not exist. The side lobes
may also receive interfering signals from different directions
than our focused attention, and increase the noise level in
the receiver. The ability to suppress these ghost images is
given by the level of the side lobes relative to the mainlobe.
Minimizing side lobe levels is crucial for the performance of
the array.

III. NORSONIC NOR848A ACOUSTIC CAMERA

Fig. 9. Geometry of Norsonic NOR848 acoustic camera

The Norsonic NOR848A sets a new standard for acoustical
cameras. The large number of microphones eliminates the
problems of ghost-spots, compared to an acoustic camera
with low number of microphones and high side lobe effect.
Seen in Fig. 10 is the array geometry and beampattern at f
= 2 kHz for the NOR848A 1.0 m array with 256 microphones.
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By having non-uniform element distance the camera avoids
problems related to grating lobes. Through clever positioning
of the array elements, along with element weighting changing
according to the input frequency, the side lobe levels are
greatly reduced, along with a sharpened mainlobe compared
to the beampatterns of the uniformely weighted rectangular
and circular array.

Fig. 10. Geometry and beampattern of 256 element Norsonic NOR848A-10
acoustic camera at f = 2 kHz
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Fig. 11. Beampattern for rectangular and circular array, and Norsonic
NOR848A-10 acoustic camera at f = 2 kHz. All arrays have the same number
of elements

As seen from Fig. 10 the NOR848A acoustic camera
exhibits a circular symmetry in the beampattern with evenly
distributed spatial response. The mainlobe is narrower for

better zoom and low side lobes ensures no ghost signals. The
distribution of the high number of microphones ensures high
resolving power and reduces the problems due to side lobe
effects, while the digital microphones ensure large dynamic
range and high stability. Comparing the beampatterns at
frequency f = 2 kHz for the three different array geometries
as seen in Fig. 11, the Norsonic NOR848A has a side lobe
level -10 dB lower than a circular array, and -24 dB lower than
a rectangular array for the same number of elements.
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APPENDIX

The wavenumber vector (or wave vector) of a plane wave
~k = {kx, ky, kz} is the propagation vector giving both the
magnitude and direction of arrival of the incident plane wave.
Assuming a plane wave with wavelength λ, the magnitude
of the wavenumber vector is the wavenumber of the wave
|~k| = k measured in units of radians per meter.

|~k| = k =
ω

c
=

2π f
c

=
2π

λ
(1)

where f is the frequency of the incident plane wave
(ranging from 20 Hz to 20 kHz for audible sound) and c is
the speed of sound waves in air approximately 340 m/s.

Fig. 12. Spherical coordinate system (image courtesy of Wikipedia)

In most situations, a three-dimensional Cartesian grid rep-
resents space, with time being the fourth dimension. Other
coordinate systems may be defined as well, and for certain
problems, it’s more convenient to use spherical coordinates.
Here a point is represented by its distance r from the origin,
its azimuth φ within the equatiorial plane, and its angle θ down
from the vertical axis. In Fig. 12 a right handed orthogonal
coordinate system is depicted along with a spherical coordi-
nate system. The angle θ is known as the elevation and is
the normal incidence angle, and φ is denoted the azimuth
which is the angle in the XY plane. For a wave propagating
in spherical coordinates, the wave vector is related to the
Cartesian coordinates by simple trigonometric formulas

kx = k sin θ cos φ

ky = k sin θ sin φ

kz = k cos θ (2)

where the x-component of the wave vector, kx, determines
the rate of change of the phase of a propagating plane wave

in the x-direction. The same definitions apply for the y- and
z-directions.

When describing the response of an array which is not
discrete, but can be sampled at all points within an area,
the term aperture smoothing function is used. The aperture
smoothing function of an array is given as

W(~k) =
∫ ∞

−∞
w(~x)ej~k~x (3)

where ~x describes the extent of the array. The discrete
version of the aperture smoothing function is named the
array factor (AF), and describes the spatial response of an
M element array. The total response of an array is called
the array pattern, or beampattern (BP), and will not only be
a function of the array geometry, but also of the radiation
pattern of the individual elements. The spatial response of the
element is called the element pattern (EP). The beampattern
which gives the complete pattern representation of the array
can be found by multiplying the array factor and the element
pattern. This assumes that the element pattern is identical
for each element. The beampattern of an array can then be
stated as

BP = EP · AF (4)

For an array with isotropic elements, the beampattern of
the array is the same as the array factor. The positions of the
M array sensors, or array elements, are given as

~x = {xm, ym, zm} (5)

where m ranges from 0 to M− 1 and each sensor has a
weight wm. The total beampattern of an array with isotropic
elements is the weighted sum of the individual elements and
may be calculated as

W(~k) =
M−1

∑
m=0

wmej~k~x

W(kx, ky, kz) =
M−1

∑
m=0

wmej(kx xm+kyym+kzzm)

W(kx, ky, kz) =
M−1

∑
m=0

wmejk(sin θ cos φxm+sin θ sin φym+cos θzm)

W(kx, ky, kz) =
M−1

∑
m=0

wmej 2π f
c (sin θ cos φxm+sin θ sin φym+cos θzm)

(6)
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